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Characterization of the dynamics of block copolymer microdomains
with local morphological measures
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We investigate the structure formation in thin films of cylinder forming block copolymers. With in situ
scanning probe microscopy image sequences can be recorded with high temporal (2 min per frame) and spatial
(10 nm) resolution. We compare different image processing methods for quantitative analysis of the large
amount of data. Computing local Minkowski functionals yields local geometrical and morphological informa-
tion about the observed structures and enables us to track their evolution with time. An alternative character-
ization method is to reduce the gray scale images to their skeleton and to classify and count the branching
points of the skeletonized structure. We tracked the temporal evolution of these measures and computed

correlation functions.
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I. INTRODUCTION

Within the last decade, block copolymers have become
more and more interesting for nanotechnological applica-
tions, such as patterned media storage, nanostructured mem-
branes, or photonic crystals [1]. For these applications,
which need highly ordered areas of nanometer scaled struc-
tures, thin films of block copolymers are of particular interest
since they offer a rather straightforward way to align the
microdomain structure parallel to the film plane. Various
methods such as, for example, graphoepitaxy [2], electric
fields [3-5], and shear alignment [6] have been demonstrated
for aligning microdomains parallel and perpendicular to the
film plane. While the formation of equilibrium structures in
these films was already intensively studied [7-12], the el-
ementary processes of pattern ordering and microdomain dy-
namics, such as motion of individual structural defects
[13-19], form fluctuations of microdomains, or orientational
reordering [14,16] are still subject to research. While track-
ing the evolution of individual defects [17-19], fast and re-
petitive transitions between distinct defect configurations can
be observed [18]. Tsarkova er al. postulated that the dynam-
ics of neighboring defects might be correlated [18]. Another
interesting topic is the study of elementary processes during
the rearrangement of block copolymer microdomains upon
the change of an external control parameter by applying, e.g.,
electric fields [20-28], shear flow [29-33], or temperature
changes [34,35].

With scanning probe microscopy (SPM) [36,37] it is pos-
sible to study the occurring structures with high spatial res-
olution in real space. Here, SPM in sifu measurements of
melts [18,19] and concentrated solutions of block copoly-
mers [17] during annealing are an important advance com-
pared to the method of stepwise annealing and subsequent
SPM measurements which was used in previous works
[13-16]. Measuring in situ allows us to record snapshot
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images of the sample surface with a rate of up to 1
frame per minute. With modern high speed SPMs data-
acquisition times reaching video rates can be achieved,
enabling the study of a wide variety of dynamical processes
with unprecedented temporal resolution (for a review,
see Ref. [38]). Besides experimental studies, also detailed
theoretical simulations of the microdomain dynamics
and the involved elementary processes have been made
[17,23,25,26,28,31-33,39,40].

To compare theory and experiment it is necessary to
describe the experimentally measured data and the simulated
data in a quantitative way. Many authors [13,14,17-19]
classify and count defects manually. The drawback of
this method is that it is subjective and that it takes a lot of
time. Hence, it is only applicable to few, small data sets.
For an adequate statistical analysis of large data sets captur-
ing the structure forming processes we have recently intro-
duced an automated method for classification and counting
defects [41].

Harrison ef al. examined the coarsening dynamics of a
single layer of cylinder forming block copolymer micro-
domains by SPM measurements [14,16]. They have com-
puted the microdomain or stripe orientation by measuring the
local intensity gradient field ®(7) of the SPM images. On the
basis of this information they have calculated local orienta-
tional and translational order parameters. Doing so for dif-
ferent annealing times they have extracted time-dependent
orientational correlation lengths which grow with the aver-
age spacing between t% disclinations. Furthermore, they
have detected disclinations automatically by computing
closed path integrals of the variation of @(r). Following the
density of disclinations and comparing it with the evolution
of the orientational correlation length they have suggested a
dependence of the dynamics of the orientational correlation
length on the interaction of topological defects. By tracking
the evolution of several disclinations, they also observed
dominant mechanisms of disclination annihilation.

Besides the investigation of cylinder forming block co-
polymers also sphere forming block copolymers have been
investigated [42-44]. Here, disordered hexagonal point pat-
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terns are studied by computing a Fourier transformation of
the SPM images and Voronoi diagrams (and Delaunay trian-
gulation, respectively) of the sphere centers. Disclinations
are found by counting pairs of irregular shaped Voronoi cells
(or sphere centers with an unusual number of neighbors, re-
spectively). From the Voronoi diagrams (and Delaunay trian-
gulation, respectively) also orientational and translational or-
der parameters were calculated and followed during
annealing.

Soille [45] has used morphological operators, such as
opening and closing, to compute the orientation field of the
striped pattern of a cylinder forming block copolymer. By
applying the watershed transformation to an SPM image of a
block copolymer film with increasing film thickness different
morphological structures have been separated. Soille has also
computed the local connectivity number of an SPM image
containing three different types of microdomains and has
showed that this measure is also useful to discriminate dif-
ferent morphologies.

Another approach to analyze phase separating block co-
polymer systems is to use topological and geometrical quan-
tities, such as Minkowski functionals [46—48]. These mea-
sures are well known in image analysis [49], mathematical
morphology [50], and integral geometry [52,53]. They are
numerically robust, independent of statistical assumptions on
the distribution of phases, and can be calculated effectively
from binary images [52-54]. They provide information on
connectivity, shape, and content of spatial morphologies. As
Minkowski functionals are calculated for binary (i.e., black
and white) images it is important to decide which pixels are
in or outside the pattern. One approach is to compute the
Minkowski values for a set of thresholds [54]. In this way,
threshold-dependent curves are obtained which depend on
the gray scale distribution of the initial images. Comprising
physical knowledge this information can be further reduced
[46,53] and used for a quantitative comparison of experimen-
tal and simulation data [55,56].

Also many other—measured as well as simulated—
complex patterns can be characterized with Minkowski func-
tionals in two dimensions as well as in three dimensions
[53,54,57-60]. Minkowski functionals have been also used
to study structure formation in thin films of polymer blends
[61-67]. However, in all of these applications only the com-
plete images have been analyzed. As small fluctuations
around individual defects contribute only little to these large
integration areas, these fluctuations are not captured by this
kind of Minkowski analysis.

Our approach is to analyze time series of block copolymer
structure formation with local Minkowski measures which
are calculated for small areas centered at each pixel of a
binarized SPM image. Hereby, we concentrated on the local
Euler characteristic which is in particular sensitive to topo-
logical changes of the pattern. Alternatively, we have re-
duced the gray scale structures to their skeleton and classi-
fied the obtained graphs by marking end and branching
points similar to the method described in Ref. [41]. Subse-
quently, we counted the different types of defects and fol-
lowed their evolution with time. In the resulting curves tran-
sitions between different morphologies are clearly visible.
Besides these larger changes also smaller fluctuations exist.
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FIG. 1. (a) Tapping mode SPM phase image P(x,y) of a thin
film of a cylinder forming polystyrene-block-polybutadiene-block-
polystyrene triblock copolymer (data set A). Bright corresponds to
polystyrene microdomains. Depending on the film thickness the
block copolymer shows different structures, such as parallel cylin-
ders (bright stripes), upright standing cylinders (bright dots), or per-
forated lamellae (dark dots). Here, the film thickness decreases
from left to right. (b) Map of the local Euler characteristic X39(x,y)
of (a) calculated with box size 14X 14 pixels and threshold p
=0.39. It can be used as a morphology map mapping different struc-
tures to different gray values. All quantities are dimensionless.

Therefore, we have analyzed the temporal evolution of
Minkowski measures and the number of branching points
and compared the results with the time constants obtained by
calculating laterally averaged pixel-to-pixel correlations. The
methods demonstrated in this paper are applicable to a large
group of different SPM experiments and simulations on the
block copolymer microdomain dynamics.

II. METHODS

A. Experimental data sets

We demonstrate our image analysis methods on two data
sets of thin films of cylinder forming block copolymers. The
first data set (data set A) is a tapping mode SPM phase image
[Fig. 1(a)] of a thin film of a cylinder forming polystyrene-
block-polybutadiene-block-polystyrene triblock copolymer
(SBS) with a film thickness corresponding to one and two
layers of cylinders. The image is from the data set presented
in Ref. [69], where experimental details are given. Figure 1
shows a similar structure as the sample shown in Fig. 6(b) of
Ref. [69].

The second one (data set B) is a series of tapping mode
SPM phase images of a thin film of a cylinder forming
polystyrene-block-polybutadiene (SB) copolymer. It shows
the changes of the microdomain structure during annealing
in solvent vapor. The data set is from Ref. [68]. The SB
block copolymer was obtained from Polymer Source Inc.
with molecular weights of blocks M,, ps=13.6 kg/mol and
M, pp=13.7 kg/mol and a polydispersity of M,,/M,=1.03.
A thin film was prepared on a mica substrate by spin coating
from a toluene solution to yield a uniform thickness of ap-
proximately 50 nm. The samples were first annealed for ap-
proximately 2.5 h in a chloroform vapor which was in-
creased stepwise from 0% to 70% of saturated chloroform
vapor. Details of the experimental setup and procedures are
described in Refs. [11,17,69]. The thin film phase behavior
of the SB diblock copolymer is similar as that of the SBS
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triblock copolymer studied in Refs. [11,17,69]. The series of
SPM images was measured in sifu in a liquid cell (Veeco
Instruments Inc.) with the specimen swollen in a chloroform
vapor. During the measurement the relative chloroform va-
por pressure was increased stepwise from 10% to 80% of
saturated chloroform vapor. Starting from 10% of saturated
chloroform vapor, the vapor pressure was increased to 20%,
30%, 40%, 50%, 60%, 70%, 75%, and 80% at frames 6, 11,
18, 31, 61, 89, 138, and 153, respectively. During the
increase of solvent vapor the film thickness increases
which causes structural transformations. The resulting
series of SPM images are 16 bit gray scale images (256
X256 pixel) with a size of 1 umX 1 wm. The temporal
resolution is 2 min per frame.

B. Image preprocessing

The gray scale of SPM phase images depends on several
operating parameters of the instrument which often change
during the measurement. Image preprocessing is necessary to
correct for this. To get rid of the tilt of the sample relative to
the scan level we fitted a plane to the image and subtracted it
from the image values. Furthermore, using the image analy-
sis software of the SPM [70] we fitted a line to each row of
pixels in the image and subtracted it from the respective row.
After these steps the gray scale histogram of each image was
equalized with the Matlab (The MathWorks Inc.) routine his-
tadapt and normalized to the range O to 1. In a final step the
images were registered as described in Ref. [71].

C. Minkowski functionals

Minkowski functionals are morphological measures well
known in digital picture analysis [49], mathematical mor-
phology [50], and integral geometry [51] which allow one to
characterize binary (black and white) images. Morphological
measures are defined as continuous and motion invariant
functionals which are additive, e.g.,, WAUB)=W(A)
+W(B)-W(ANB), where A,B are sets in the Euclidean
space. For details, see Refs. [52,53]. The theorem of Had-
wiger [72] states that all morphological measures are a linear
combination of Minkowski functionals.

In two-dimensional space which we consider in our SPM
images the Minkowski functionals are related to three famil-
iar geometrical measures: The white area fraction A, the
length of the boundary line between black and white regions
P, and the Euler characteristic X which describes the topol-
ogy of the white structure, i.e., the connectivity of the black
and white regions.

The area fraction A is computed by counting all white
pixels in the image. It is normalized by dividing it through
the total number of pixels N. The perimeter P is computed as
the number of pairs of neighbored black and white pixels and
it is also normalized by N. The Euler characteristic is the
difference of the number of black and white components
normalized by N. A black or white component is defined as a
region of connected black or white pixels, respectively.

Because of the additivity of the Minkowski functionals
they can be calculated in small vicinities of 2X2 pixels.
For pixels of equal side length, the local Minkowski func-
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tionals are rotationally invariant. So, with only six different
constellations of pixels the Minkowski functionals of the
whole image can be computed in a fast way by using a
lookup table [56].

As the SPM measurements yield 16 bit gray scale images
the data must first be reduced to binary images. However, in
the binarization process a lot of information is lost. Hence,
we have computed the Minkowski values for a set of thresh-
old values reaching from O to 1 within equidistant intervals
of 0.01 [54]. In this paper, we calculate the Minkowski func-
tionals not for the complete image but for small regions of
size m X m. In this way we obtain measures which reveal
information of the local morphology for every pixel of the
binarized SPM image except for boundary pixels.

D. Skeletonization

Another approach to characterize block copolymer micro-
domain structures is to skeletonize the binarized images.
This can be done with different algorithms (for an overview
see, e.g., Refs. [73,74]). We have used the skeletonization
method implemented in ImageJ (Wayne Rasband, National
Institute of Health, USA). Due to noise in the SPM images
artifacts of the skeleton exist. They are, e.g., short protru-
sions or clusters of threefold branching points at positions
where cylinders branch. These artifacts are identified and
removed as described in Ref. [41].

We interpreted the resulting skeleton as a graph which we
characterized by its junctions and the number of edges origi-
nating from each junction. In this way, a junction with one
neighbor (end point) was assigned the value 1, a junction
with two neighbors (line point) was assigned the value 2, and
so on. For every frame we counted how many junctions of
each value are in the image. Doing so for all frames allowed
us to observe how the number of junctions with different
value was changing with time.

III. RESULTS AND DISCUSSION
A. Minkowski functionals

Figure 1(a) shows a typical SPM image of a thin film of
block copolymer containing different microdomain struc-
tures such as parallel cylinders (C;), upright standing cylin-
ders (C ), and perforated lamellaec (PL). We binarized the
normalized gray scale image with the threshold p=0.39 and
computed the local Euler characteristic X3¢ with local box
sizes of 14X 14 pixels. As it can be seen in Fig. 1(b) the
different morphological regions in Fig. 1(a) are assigned dif-
ferent X3o values yielding a new gray scale image which can
be considered as a morphology map of the original SPM
image [75]. Here, the box size m=14 equals approximately 2
times the cylinder-cylinder distance. With increasing box
size this morphology map gets more and more blurred. By
averaging over larger integration areas large morphological
features are more emphasized in the morphology map
whereas smaller features are disappearing. Decreasing the
box size, in contrast, causes that more and more details of the
morphological information are visible. The smaller the inte-
gration area is, the more artifacts appear in the morphology
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FIG. 2. Area A, Euler characteristic X, perimeter P, and the ratio
X/ P as functions of the threshold p calculated for different samples
with different morphologies using a box size of 14 X 14 pixels. The
first row shows examples of the different types of microdomain
structure. In each diagram four curves are shown which correspond
to four different samples of the same type of structure. All quanti-
ties are dimensionless.

map. Therefore, m must be chosen carefully depending on
the kind of information which should be extracted.

To examine if there are thresholds where different mor-
phologies can be discriminated in a robust way we plotted
the threshold dependent Minkowski measures A o Pps and X o
for different morphologies at several randomly chosen spots
of the SPM image. Obviously, the values of the Minkowski
functionals depend strongly on the chosen threshold. For p
=0 and p=1, e.g., the binarized image is uniform and, there-
fore, no discrimination between the different gray scale mor-
phologies is possible. However, Fig. 2 shows that the shape
of the curves is characteristic for the respective kind of pat-
tern (top of Fig. 2). As an example, we will discuss the Euler
characteristic X,, for the three different morphologies. For
perforated lamellae the curve starts at zero and increases then
to a plateau with a positive X, value. At p=~0.5 the curve
decreases very steep to a negative X, value at p=~0.7. Fi-
nally, X, increases to zero for p>0.9. In the case of upright
standing cylinders the Minkowski curve appears mirrored
compared to that of the PL morphology. It starts at zero but
then increases first to a small positive peak and decreases at
p=~0.2 to a plateau with negative X, value. This is due to the
fact that there are bright dots in SPM images of the C
morphology and dark dots in case of the PL morphology.
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Therefore, the image of a C; morphology is the inverse im-
age of a PL morphology and vice versa. The threshold de-
pendent Euler characteristic of parallel cylinders (C;), how-
ever, has two distinct peaks (a positive peak at p~0.2 and a
negative peak at p~0.7) separated by a plateau between p
~0.3 and p~0.6 with X,=0. Since in all of these curves a
plateau exists within the interval from p=~0.3 to p=~0.5, a
single threshold p*€[0.3,0.5] could be chosen for which the
Minkowski measures are rather independent of small differ-
ences in the normalization of gray values. We calculated the
Minkowski measures for cylinder-cylinder distances of ap-
proximately 7 pixels. The threshold dependence of
Minkowski measures is similar for images with cylinder-
cylinder distances of 35 pixels.

A further improvement of the robustness can be achieved
by calculating the ratio K,=X,/P, (bottom line of Fig. 2)
which corresponds to the mean curvature of the border line
between black and white regions. As can be seen in Fig. 2,
the fluctuations of this ratio are noticeably smaller than those
of X, and P,. Moreover, the form of the threshold depending
curve is very intuitive. For small (large) threshold values p
many isolated small regions (holes) exist with a high mean
curvature of the corresponding boundary lines. In the interval
p€[0.3,0.5] K, reflects the morphology of the investigated
pattern in a robust way. It has a positive value for the PL
morphology, a negative value for the C, morphology, and
equals O for the lamellar morphology. K, is a robust and
intuitively understandable measure for characterizing with
only one parameter the different structures occurring during
block copolymer microdomain transitions.

The possibility to distinguish between different morpholo-
gies by the form of the Minkowski curves encouraged us to
investigate phase transitions occurring in our experiments by
local Minkowski measures. We chose two areas from a se-
quence of larger SPM images (Fig. 3). The first area [Fig.
4(a)] depicts a spot where the morphology clearly changes
with time from C,; to partly PL and finally to mainly C,. In
contrast, in Fig. 4(b) the morphology is C; and does not
change significantly during the observation period. The size
of the samples (40X 40 pixel) is approximately 4 times the
cylinder-cylinder distance.

For these two areas we computed the Euler characteristic
for all time steps and thresholds. In Fig. 5 the value of X, is
displayed as gray value as a function of time step n and
threshold p. Following the evolution of the threshold depen-
dent Euler characteristic X, with time in Fig. 5(a) a change of
the curve shape can clearly be seen at n=120 (see gray
arrow). This change occurs at the same time at which a mor-
phology change can be seen in the individual images. In
contrast, in Fig. 5(b), where no morphology change is visible
in the SPM images the shape of the curve is essentially the
same for all time steps.

Although the general shape of the Euler characteristic X,
is similar for similar morphologies slight fluctuations exist in
Fig. 5. To examine this we chose one constant threshold p,
=0.39 at which the transition between the different shaped
Euler characteristic curves is pronounced. For this threshold
we plotted the Euler characteristic X3¢ over time (Fig. 6). The
X5 curve in Fig. 6(a) which corresponds to the area shown in
Fig. 4(a) first fluctuates around a constant mean value and
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FIG. 3. Tapping mode SPM phase image of a polystyrene-block-
polybutadiene diblock copolymer (image size 213 X 221) swollen in
chloroform vapor (data set B). The image is the first of a sequence
of images displaying the microdomain dynamics during further an-
nealing. The temporal evolution of region (a) and (b) is shown in
Fig. 4. Crosses and numbers indicate the position of samples that
are analyzed in Figs. 7 and 8.

decreases after approximately 120 time steps. This indicates
a morphology transition from a parallel cylinder structure to
a dotlike defect structure. The X3¢ curve in Fig. 6(b) which
corresponds to the data set shown in Fig. 4(b) fluctuates
around a mean value that stays nearly constant for all time
steps. Thresholding X, at a different threshold value p,
=0.33 yields curves X33 which have a similar shape but differ
in the form of the fluctuations.

We now have analyzed these curves by computing tem-
poral correlation functions of the data sets marked in Fig. 3.
For sample 1, 4, and 5 the correlation curves are decreasing
very fast within 7<<3 and remain constant for larger 7, where
7 is the time lag in units of frame numbers [Fig. 7(a)]. No
characteristic time constants can be recognized. The correla-
tion curves of samples 2 and 3 decrease slowly with a time

@ (b)

ARG RE T
e T T
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FIG. 4. Two samples (40X 40 pixel) of the film shown in Fig. 3
observed during increasing saturation with chloroform vapor from
10% to 80%. The individual images show the dynamics of the film.
The frame rate is about 2 min per frame. The numbers indicate the
frame numbers. (a) Position (a) of Fig. 3. The whole data set con-
sists of 161 images. (b) Position (b) of Fig. 3. The whole data set
consists of 127 images.
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FIG. 5. Gray scale maps of the Euler characteristic X at box size
40X 40 as a function of density threshold p and frame number n: (a)
of the sample shown in Fig. 4(a), (b) of the sample shown in Fig.
4(b). All quantities are dimensionless.

constant of about 40-50 frames. To test if these time con-
stants reflect only the occurring morphology transition as
indicated by the decrease of X3y and X5; for n>100 [Fig.
6(a)] we restricted the analysis of the time-dependent Euler

(a)

0,02 4

X 0.00-

-0,02 4

FIG. 6. Euler characteristic X39(n) and X33(n) for density thresh-
old p=39 and p=33, respectively, versus frame number n: (a) cor-
responds to the sample shown in Fig. 4(a), (b) corresponds to the
sample shown in Fig. 4(b). All quantities are dimensionless.
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FIG. 7. Correlation function of the Euler characteristic X39(n)
versus time lag 7. The five curves correspond to different samples
of Fig. 3, where sample 3 corresponds to Fig. 4(a) and sample 4
corresponds to Fig. 4(b). (a) Correlation functions calculated in the
intervals [1,161] and [1,127], (b) correlation functions calculated in
the interval [1,100]. All quantities are dimensionless.

characteristics to the interval n €[ 1,100] in which the time
series of X3 are approximately constant. Figure 7(b) shows
that for this smaller time interval the correlation functions
are constant for 7> 3 for all five samples. This shows that no
temporal correlations can be detected. The value of the cor-
relation functions normalized by the squared mean value of
the time series is a measure of the amplitude of the temporal
fluctuations.

We compared these curves with the laterally averaged
pixel-to-pixel correlation functions (Fig. 8). For this, we fol-
lowed for every pixel position in the boxes indicated in Fig.
3 the evolution of the respective gray value with time and
computed the correlation function of these curves. Then we
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>
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FIG. 8. Averaged pixel-to-pixel correlations of image samples
P(x,y) (where x and y are the spatial coordinates) versus time lag 7.
The curves correspond to the same samples as in Fig. 7. At three
spots error bars indicating the standard deviation of the correlation
function corresponding to sample 3 are shown. The standard devia-
tion is similar for all 7 and for all samples. All quantities are
dimensionless.
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FIG. 9. Reduced skeleton of frame 1, 67, and 161 of the se-
quence of images shown in Fig. 4(a).

averaged all 40 X 40 correlation curves. The resulting aver-
aged correlation curves show a decrease with time constants
of about 20-30 frames. Furthermore, the shape of the pixel-
to-pixel correlation function does not differ significantly for
the different types of morphologies. The rather large standard
deviation does not allow for a more detailed comparison.
However, correlation functions are known to be insensitive
to shape. For instance, in Ref. [76] one may find for point
patterns a discussion of which spatial features are visible in
correlation functions and also a comparison of correlation
functions with the shape-sensitive Minkowski functionals.

B. Skeletonization

By skeletonizing and classifying the SPM images shown
in Fig. 4(a) we yield a time series of two-dimensional graphs
consisting of white lines and classified branching (Fig. 9).
Figure 9(a) shows the graph corresponding to frame 1 in Fig.
4(a), Fig. 9(b) corresponds to frame 70 [not shown in Fig.
4(a)] and Fig. 9(c) corresponds to the last frame in Fig. 4(a).
The details of the resulting graph depend on the binarization
method and on the image preprocessing. To get a better com-
parison with the Minkowski method we also binarized the
SPM images with a fixed threshold p=0.39.

Figure 10(a) shows the temporal evolution of the number
of threefold branchings (y connections) for samples 3 and 4
in Fig. 3. The shape of the curve appears to be quite similar
as the temporal evolution of the Euler characteristic shown in
Fig. 6. For sample 4 the number of threefold branching is
fluctuating around a more or less constant value [Fig. 10(a)].
For sample 3, however, it increases first slightly and starts to
decrease at frame 120. The morphological transition is also
visible in the temporal evolution of y connections. When the
structure does not change the curve fluctuates around a con-
stant mean. Computing the correlation functions for the two
curves [Fig. 10(b)] a similar behavior can be seen as in Fig.
7. As the correlation curve corresponding to sample 3 shows
a slow decrease with a time constant of 40-50 frames [Fig.
10(b)] the correlation curve belonging to sample 4 decreases
very fast indicating that no temporal correlations exist on the
studied time scale.

IV. SUMMARY

We have demonstrated and compared three different ap-
proaches for quantifying the temporal evolution of the local
morphology of the microdomain structure of a thin film of
block copolymer. Compared to other methods in the litera-
ture [14,16,42,43] local Minkowski functionals and statistics
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FIG. 10. (a) Number of y connections versus frame number n of
samples 3 and 4 corresponding to the data sets shown in Fig. 4(a)
and Fig. 4(b), respectively. (b) Correlation function of the number
of y connections versus time lag 7. Sample 3 and 4 correspond to
the data sets shown in Fig. 4(a) and Fig. 4(b), respectively. For
sample 3, also the correlation function for frame 1 to frame 100 is
shown. All quantities are dimensionless.

based on the skeletonization of SPM gray scale images have
the advantage of analyzing the data in real space. In addition
they do not depend on periodic patterns or statistical assump-
tions. Therefore, they are especially suited for morphologies
containing a lot of defects whose evolution should be tracked
and whose temporal and lateral correlations should be inves-
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tigated. Furthermore, Minkowski functionals computed as
function of the threshold value require no a priori model of
the structure. However, these curves contain redundant infor-
mation. Reducing them to characteristic values which can be
tracked over time must be done carefully. We have shown
that an interval of thresholds can be identified where differ-
ent morphologies can be distinguished in a robust way,
which does not depend on the particular choice of the thresh-
old value.

Our results show that Minkowski functionals are not only
applicable to the analysis of data of structural transitions in
block copolymer microdomains [46] but as well to the analy-
sis of the more noisy data in SPM experiments. We analyzed
the fluctuations of the time-dependent Euler characteristic
and the temporal evolution of y connections by correlation
analysis. In both, no characteristic time constants could be
detected in the fluctuations. On larger time scales the corre-
lation functions are dominated by structural transitions of the
examined patterns. None of the three methods shows a tem-
poral correlation in the microdomain dynamics of the studied
data set. The presented methods appear as well suited tools
for the search for possible lateral correlations of defect dy-
namics, which is a topic of future work.
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